irugina.github.io

Norms

Vector Norms

Matrix Norms

Frobenius norm

Frobenius norm of $X \in \mathbb{R}^{m \times n} $ (Euclidean norm of vector obtained by listing all entries): \begin{equation*} ||X||_F = (\textbf{tr}(X^TX))^{\frac{1}{2}} \end{equation*}

Operator norm

Operator norm of $X \in \mathbb{R}^{m \times n} $, induced by norms $||\cdot||_a$ on $\mathbb{R}^{m}$ and $||\cdot||_b$ on $\mathbb{R}^{n}$: \begin{equation*} || X ||_{a,b} = \sup \{ ||Xu||_a \; \bigg{|} \; \; ||u||_b \leq 1 \} \end{equation*}

Spectral norm

When $||\cdot||_a$ and $||\cdot||_b$ are both Euclidean norms the operator norm of $X$ is its maximum singular value, also called the spectral norm or $l_2$-norm of $X$. \begin{equation*} ||X||_2 = \sigma_{max} (X) = (\lambda_{max}(X^TX)) ^ {\frac{1}{2}} \end{equation*}

Nuclear Norm

Dual of spectral norm is the nuclear norm, the sum of the singular values: \begin{equation*} ||Z||_{2*} = \sup \{ \textbf{tr}(Z^TX) \; \bigg{|} \; \; ||X||_{2} \leq 1 \} \end{equation*} \begin{equation*} ||Z||_{2*} = \sigma_1(Z) + ... + \sigma_r(Z) = \textbf{tr}(Z^TZ)^{\frac{1}{2}} \end{equation*}