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Abstract
Introducing weight uncertainty in deep neural net-
works creates models with more robust predic-
tions, and thus opens a vast field of applications
of variational inference (VI) to deep learning.
Similarly to classical Bayesian inference, choos-
ing the right parametrization for the priors of the
weights and their variational posterior remains an
open question. Here, we draw inspiration from
parametrizations of physical systems to construct
novel Bayesian neural networks. We call such
networks phase-coded, since they resemble phase
manipulations of light in nanophotonics. Through
measuring the entropy of our models’ predictive
distributions and by using calibration plots we ob-
serve that our model’s predictive uncertainty is a
promising alternative to known parametrizations.

1. Introduction
Recent developments of neural network models have
produced state of the art results across a multitude of
input modalities. Convolutional deep neural networks
(DNN) have revolutionized computer vision (Krizhevsky
et al., 2012) and Transformer-based architectures are used
across all types of natural language processing applica-
tions (Vaswani et al., 2017).

One significant limitation of deep learning models is that we
cannot easily extract uncertainty information in a principled
way, which is critical in a plethora of applications, such as
active learning or safety-critical domains (Gal & Ghahra-
mani, 2015). Hence, recent casts Bayesian deep learning
as an optimization problem using VI (Graves, 2011) and
proposes a solution by employing methods compatible with
backpropagation, on which DNN training depends (Blundell
et al., 2015).

Nevertheless, two major issues arise in VI for DNNs: (a)
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finding and training good variational approximations of
weights posteriors is hard; (b) both training and inference
in VI for DNNs requires estimation of intractable integrals,
which places a burden on the computational resources.

Here, we address (a) by proposing physics-inspired phase-
coded neural networks in Bayesian deep learning. Namely,
we investigate parametrizations of neural networks via tun-
able Mach–Zehnder interferometers in the optical comput-
ing domain (Jing et al., 2017). Such systems can simulate
arbitrary neural networks, and due to their analogue na-
ture carry natural noise in their phase-shifters and signal
encoders/ detectors, yielding nice models for both aleatoric
and epistemic parametrizations (a). Furthermore, building
optical hardware based on such parametrizations can speed
up DNN inference by more than two orders of magnitude
(Shen et al., 2017), making phase-coded neural networks
resource-friendly (b). Although this is a very promising
property of our parametrization, we leave it for a physics
study and focus on (a) in this work.

We assess the benefits and drawbacks of our proposal using
proof-of-concept simulations on classification MNIST and
Fashion MNIST by comparing against standard Bayesian
and non-Bayesian neural networks, and non-Bayesian neu-
ral networks with Dropout. In Section 2 we explain our
model. Below, we organize the paper as follows: in Sec-
tion 2 we explain the optimization and our parametrization.
In Section 3 we present our experiments and provide a dis-
cussion on our results. In Section 4 we discuss relevant
work. We conclude with final remarks in Section 5.

2. Optimization and Parametrization
Bayesian neural networks are neural networks with prior
on their weights. Inference with such models is taken as
an expectation over a learned posterior over the weights.
Below we discuss an effective way to train such networks.

2.1. Variational Inference

We assume that the weights of the neural networks model
pD|w(·|·) are a random variable w, which is modeled with
the following prior pw(w). The posterior pw|D(w|D), given
the data D as a random variable D, is hard to compute.
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Therefore, we resort to an approximation of the posterior
q(w; θ), parametrized by parameters v, which we fit by
minimizing the following variational free energy F (D,v),
given as follows

− Eq(·;v)[log pD|w(D|·)] + KL[q(·;v)‖pw(·)], (1)

where the KL denotes the KL-divergence and the expecta-
tion is taken over the variational distribution.

Objective (1) corresponds to the minimum description length
loss function, which is how variational inference was first
introduced to neural networks (Hinton & Zemel, 1993).
As discussed in (Graves, 2011), the first term decreases as
they network’s accuracy increases and can be interpreted
as an error term, while the second one quantifies the model
complexity.

We model the variational posterior q(w;v) using the fol-
lowing two assumptions:

• We assume the mean-field approximation holds;

• We model the target distribution using Gaussian ap-
proximations.

Farquhar et al. (2020) discuss the first approximation and
argue that it is particularly well-suited for neural nets. They
first show that for linear activations deep neural networks
with diagonal posteriors are equivalent to shallower mod-
els which do exhibit cross-correlation terms and then per-
form an empirical study to demonstrate the same principle
extends to neural architectures used in practice. These re-
sults further motivate our quest of accelerating inference in
Bayesian deep networks.

Additionally, although Farquhar et al. (2020) mostly investi-
gate the cost of employing mean-field techniques assuming
Gaussian posteriors, they also show that the second approx-
imation still enables us to model multi-modal posteriors,
thus addressing a common critique of this approximation.

We model the prior distribution by simple mixtures of
Gaussians. This choice resembles a spike-and-slab prior
(Mitchell & Beauchamp, 1988) which is a good fit for opti-
mization using stochastic gradient descent (Blundell et al.,
2015).

2.2. Training Procedure

We perform variational inference and reduce the Bayesian
learning problem to an optimization one with the objective
given by (1). Note that this objective includes an expec-
tation over q(w;v) and we are optimizing with respect to
the v’s which parameterize q(w;v). Blundell et al. (2015)
describes how to take gradients of this objective using a vari-
ant of the reparametrization trick applied to all our network
parameters, which we discuss below.

By introducing a random variable ε with probability density
q(ε) to capture the problem’s stochasticity we can write
w = t(v, ε) where t is deterministic. Then, assuming
q(ε)dε = q(w|v)dw, we have that the expectation and
gradient operators commute:

∂

∂v
Eq(w|v) [f(w,v)] =

Eq(ε)
[
∂f(w,v)

∂w

∂w

∂v
+
∂f(w,v)

∂v

]
(2)

We approximate the expectation using Monte Carlo esti-
mators with a small number of samples - we experimented
with values in the range [1, 5]. Note that we can compute
equation (2) easily due to automatic differentiation pack-
ages, such as PyTorch (Paszke et al., 2017) that implicitly
calculate the correct total derivative.

We continue with the crux of this paper: a novel parametriza-
tion for neural networks.

2.3. Phase-coded parametrization.

Suppose we have a matrix A ∈ RN×N . Let N = 4 for ease
of illustration, the form for general N follows analogously.
By the SVD decomposition, A = UΣV T , where U and
V are orthogonal matrices, i.e. U, V ∈ O(N), and Σ is a
diagonal matrix. Reck et al. (1994); Clements et al. (2016)
demonstrate that we can parametrize U as a block-diagonal
composition of 2-by-2 rotations, each rotation defined for a
parameter θ and having the form

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (3)

The transformation (3) has a physcial meaning, since it
could be similulated by a Mach-Zender Interferometer.

Figure 1 demonstrates how the parametrization works for
the case of N = 4. We alternate two types of blocks of
transformation: blocks (a) and (b). The first block is type
(a) and consists of two rotations R(θ1) and R(θ2), so the
matrix is given by

A(θ1, θ2) := blockdiagonal(R(θ1), R(θ2)) ∈ R4.

Then follows a block of type (b), which consists only a
single rotation in the middle, and identity operators on top
and bottom, hence the matrix is given by

B(θ3) := blockdiagonal(id, R(θ3), id) ∈ R4,

where id is the identity operator in R, i.e. id ≡ 1. By alter-
nating two more times we get that the total transformation
is as follows

U(θ1, . . . , θ6) := B(θ6)A(θ4, θ5)B(θ3)A(θ1, θ2), (4)
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Figure 1. Phase-coded parametrization. The input vector is split
into four channels (corresponding physically to nanophotonic
waveguides where the information of the vector is encoded in
coherent light generated by laser) and then undergoes series of
transformation. At each crossing point we have a rotation (imple-
mented physcially by a Mach-Zender inteferometer by introducing
phase-shifts in the light and then coupling corresponding channels).
At the end, the result is a general orthogonal transformation of the
input, labelled by U.

and hence for a given input x ∈ R4, the output from the
layer that we introduce is U(θ1, . . . , θ6)x ∈ R4. Most
notably, U(θ1, . . . , θ6) is an orthogonal matrix by virtue
of its construction (4).1 As a sanity check, an orthogonal
matrix inO(N) is parametrized byN ·(N−1)/2 parameters.
In our case we expect 4 · 3/2 = 6 parameters, which are
exactly given by θ1, . . . , θ6.

Thus, the layer we just constructed we will label with
phasecoded(N), which parametrizes a general orthogonal
transformation in O(N).

3. Experiments
3.1. Datasets

We experiment with classification on the MNIST dataset (Le-
cun et al., 1998), with a train/test split of 60,000/10,000
handwritten digits in gray scale and shape 28× 28. An alter-
native, more challenging, dataset is FashionMNIST (Xiao
et al., 2017), where the 10 classes of digits are replaced with
clothing items, and the shape and gray scale are unchanged.

3.2. Models

The backbone of our models is a three layer fully connected
neural network with hidden size 400. We compare four
models:

• Standard neural network (NN);

• NN with Dropout (Srivastava et al., 2014) probability
of 0.5 on the first hidden state and 0.2 on the second;

• Bayesian neural network (BNN) trained with the opti-

1Product of orthogonal matrices is orthogonal, since O(N) is
closed under multiplication of matrices.
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Figure 2. Comparison between methods. It seems that NN +
Dropout gives the best entropy with a good enough accuracy and
that our BNN can match accuracy of baseline BNN with higher
out-of-domain entropy. Accuracy on FashionMNIST. Entropy on
MNIST.

mization strategy in Section 2;

• BNN with our parametrization trained with the opti-
mization strategy in Section 2.

Our parametrization implies that the model’s layers are

[linear(784, 400), phasecoded(400), linear(400, 10)],

where 784 is the size of the input images 28× 28, N = 400
is the hidden size and 10 is the number of possible classes.
The training loss for the standard NNs is the negative log
likelihood of the data, while the BNNs minimize objec-
tive (1). We train for 30 epochs with batch size 100, five
samples for estimation of the variational free energy, and
an qualy weighted prior mixture of two Gussians with the
same mean and variances 1 and exp(−6).

3.3. Out-of-domain Entropy

We would like to measure the predictive uncertainty of our
methods. For that purpose we train each model on Fash-
ionMNIST and then test their predictive uncertainty out-
of-domain on the MNIST dataset. The motivation for this
experiment is that the models would not see the MNIST fea-
tures during training, hence they should be uncertain when
making an out-of-domain prediction. Moreover, standard
NNs are often critiqued for being “too confident” on clas-
sification, so we would like to see the Bayesian approach
alleviates that, and if our parametrization further helps. For
that purpose we set a held-out test sample of 5 MNIST data-
points and for each model we calculate the average entropy
of the predictive distributions for each datapoint.
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Figure 3. FashionMNIST Calibration plots.

The results are presented in Figure 2. We observe that
our model converges to the highest out-of-domain entropy,
performing slightly better than the standard BNN. Both
standard neural network become overly confident on out-of-
domain samples, albeit offering improvements in in-domain
accuracy.

3.4. Calibration Diagnostic Plot

We continue our study on the predictive uncertainty of our
model in comparison with standard baselines via an inves-
tigation of calibration plots (Niculescu-Mizil & Caruana,
2005). Similar to the entropy measured described above,
this visual diagnostic tool evaluates the model’s ability to
not only make predictions, but more generally correctly
define a probability distribution over the target classes.

In order to evaluate this, for a target classC we look at every
test data point (x, y) and the predicted probability PM (y =
C|x) that this data point belongs to class C according to
model M . Across all (x, y) such that p = PM (y = C|x),
we expect a fraction p of them to actually have y = C.

We empirically plot this fraction as a function of assigned
probability p and expect to see a linear dependence - points
should follow the first diagonal. The discrepency between
this and observed results provide a qualitative measure of
our model’s quality. We present such plots in Figure 3 on
the FashionMNIST test split.

3.5. Explaining the Visualization

We first notice regularizers play a central part in creating
well-calibrated classifiers: the simple NN has a significantly

more spread out calibration plot. BNNs and NNs regular-
ized with Dropout perform comparable, although the former
have the advantage of providing easy-to-interpret uncer-
tainty estimators.

Bayesian neural networks still seem to underestimate un-
certainty, as the assign very low uncertainties to predictions
made far from either end of the [0, 1] probability range.
Our parameterization consistently underestimates assigned
probabilities in this range, which we believe is consistent
with Figure 2 in the sense that our BNN produces highest
out-of-domain entropy. Our conjecture is that underestima-
tion of in-domain samples correlates with high entropy of
out-domain samples, which we leave for future work.

4. Related work
Variational inference was first proposed for neural networks
by (Hinton & Zemel, 1993), motivated by the possibility of
encoding regularizers through the choice of prior. Graves
(2011) discusses how in this Bayesian NN scenario the loss
function breaks up into two terms which quantify model
performance and complexity. Hinton & Zemel (1993) pro-
vides a closed-form analytical solution for the variational
posterior in the simple case of a linear single-layer feed
forward network while Graves (2011) used Monte Carlo
methods to train more complicated Bayesian models and
then demonstrate their capacity of encoding parameter im-
portance through successful pruning experiments in both
computer vision and NLP.

More recently, Blundell et al. (2015) generalized the repa-
rameterization trick introduced by (Kingma & Welling,
2014) to operate on all network weights, which are drawn
from gaussian mixture models.

Relevant works about efficient Monte Carlo sampling with
optical hardware (Roques-Carmes et al., 2020; Prabhu et al.,
2019) implement dropout strategies naturally, and provide
an interesting venue for future work.

5. Conclusion and Future Work
In this work we presented a novel parametrization for
Bayesian neural networks. We investigated the predictive
uncertainty of classifications by comparing with standard
baselines on an out-of-domain entropy and calibration plots.
We found that both diagnostic methods suggest that our
parametrization is promising for modelling Bayesian neural
networks.

Consequently, possibilities for future work span both finding
better parametrizations for training and inference with VI
and realizing such parametrization in AI accelerators.
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