
DIFFUSION MODELS

1 DEEP UNSUPERVISED LEARNING USING NONEQUILIBRIUM
THERMODYNAMICS (SOHL-DICKSTEIN ET AL., 2015)

1.1 IDEA

Create a generative Markov chain that transforms a simple distribution into the target distribution by
reversing a diffusion process. Some related work:

1. wake-sleep algorithm: train inference and generative model against each other
2. generative stochastic networks: train Markov kernel to match its equilibrium distribution

to data distribution
3. neural autoregressive distribution estimators

1.2 FORWARD PROCESS

Start from data distribution q(x(0)). Convert it into simple distribution π(y). Forward sequence is
given by:

q(x(t)|x(t−1)) = Tπ(x(t)|x(t−1);βt)

where the Markov diffusion kernel Tπ(y|y′;β) has:

π(y) =

∫
dy′Tπ(y|y′;β)π(y′)

and β is the diffusion rate. Then the joint of whole forward sequence is:

q(x(0...T )) = q(x(0))ΠT
t=1q(x

(t)|x(t−1))

1.3 REVERSE PROCESS

Reverse distribution q(x(t−1)|x(t)) depends on whole process and cannot be easily estimated. We
train a generative model p(x(0...T )). Start from prior:

p(x(T )) = π(x(T ))

and follow same trajectory as forward trajectory in opposite direction:

p(x(0...T )) = p(x(T ))ΠT
t=1p(x

(t−1)|x(t))

1.3.1 OPTIMIZATION OBJECTIVE SETUP

Training amounts to maximizing data log likelihood:

L = Eq(x(0)) log p(x(0))

The probability the generative model assigns to the data:

p(x(0)) =

∫
dx(1...T )p(x(0...T ))

This is intractable as written above. Convert to an expectation over forward trajectories:

p(x(0)) =

∫
dx(1...T )q(x(1...T )|x(0))

p(x(0...T ))

q(x(1...T ))
= Eq(x(1...T )|x(0))

p(x(0...T ))

q(x(1...T ))

The fraction above:
p(x(0...T ))

q(x(1...T ))
= p(x(T ))ΠT

t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))
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1.3.2 OPTIMIZATION OBJECTIVE AND ELBO

OK so we wrote
L = Eq(x(0)) log p(x(0))

where

log p(x(0)) = logEq(x(1...T )|x(0))p(x
(T ))ΠT

t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))
Putting them together:

L = Eq(x(0)) log

[
Eq(x(1...T )|x(0))p(x

(T ))ΠT
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
From Jensen we exchange the log and expectation above to get ELBO:

L ≥ Eq log

[
p(x(T ))ΠT

t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
1.4 SIMPLIFYING ELBO

1.4.1 PEEL OFF p(x(T )) INTO CROSS-ENTROPY TERM

K = Eq log

[
p(x(T ))ΠT

t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
= Eq log

[
ΠT
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
+ Eq(x(T )) log p(x(T ))

= Eq log

[
ΠT
t=1

p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
−H

(
q(x(T )), p(x(T ))

)
1.4.2 WRITE LOG OF PRODUCT AS SUM OF LOGS AND KEEP FIRST TERM APART

K =

T∑
t=2

Eq log

[
p(x(t−1)|x(t))

q(x(t)|x(t−1))

]
+ Eq log

[
p(x(0)|x(1))

q(x(1)|x(0))

]
−H

(
q(x(T )), p(x(T ))

)
1.4.3 BAYES TO SIMPLIFY EACH TERM IN THE SUM FROM t = 2 TO T

p(x(t−1)|x(t))

q(x(t)|x(t−1))
=

p(x(t−1)|x(t))

q(x(t)|x(t−1), x(0))
=

p(x(t−1)|x(t))

q(x(t−1)|x(t), x(0))

q(x(t−1)|x(0))

q(x(t)|x(0))
(1)

where we used that q is Markovian to introduce the conditioning on x(0) because this will lead to
working with known qs that we can sample from and evaluate KL divergences with.

1.4.4 DISREGARD EDGE EFFECT

For the t = 1 term, we set the final step of the reverse trajectory to be identical to the corresponding
forward diffusion step:

p(x(0)|x(1)) = q(x(1)|x(0))
π(x(0))

π(x(1))

and now Eq log
[
p(x(0)|x(1))
q(x(1)|x(0))

]
is zero.

1.4.5 PUTTING EVERYTHING BACK TOGETHER

Going back to K it now looks like:

K =

T∑
t=2

Eq log

[
p(x(t−1)|x(t))

q(x(t−1)|x(t), x(0))

q(x(t−1)|x(0))

q(x(t)|x(0))

]
−H

(
q(x(T )), p(x(T ))

)
= Eq

{
T∑
t=2

log

[
p(x(t−1)|x(t))

q(x(t−1)|x(t), x(0))

]
+

T∑
t=2

log

[
q(x(t−1)|x(0))

q(x(t)|x(0))

]}
−H

(
q(x(T )), p(x(T ))

)
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1.4.6 IDENTIFY MORE ENTROPY TERMS

Terms in second sum above:

Eq log

[
q(x(t−1)|x(0))

q(x(t)|x(0))

]
= Eq log q(x(t−1)|x(0))− Eq log q(x(t)|x(0))

= −Hq(x
(t−1)|x(0)) +Hq(x

(t)|x(0))

So the second sum above telescopes and K looks like:

K =

T∑
t=2

Eq log

[
p(x(t−1)|x(t))

q(x(t−1)|x(t), x(0))

]
+Hq(x

(T )|x(0))−Hq(x
(1)|x(0))−H

(
q(x(T )), p(x(T ))

)
1.4.7 IDENTIFY KL DIVERGENCE TERMS

Terms in remaining sum above:

Eq log

[
p(x(t−1)|x(t))

q(x(t−1)|x(t), x(0))

]
= −EqDKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
1.4.8 FINAL ELBO OBJECTIVE

K = −
T∑
t=2

EqDKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
+Hq(x

(T )|x(0))−Hq(x
(1)|x(0))−H

(
q(x(T )), p(x(T ))

) (2)

Note that the entropies can be analytically computed, and the KL divergence can be analytically
computed given x(0) and x(t).

1.5 MODEL

As aforementioned we learn the generative reverse process p(x(t−1)|x(t)). Kolmogorov forward and
backward equations show that for many forward diffusion processes, the reverse diffusion processes
can be described using the same functional form.

Consider gaussian diffusion for continuous data and binomial diffusion for discrete data. Below we
review setup for each following the table in appendix.

Prior π for generative model:

1. gaussian diffusion: π = N (0, I)

2. binomial case: π = B(0.5)

Diffusion kernels (forward markov transitions):

1. gaussian diffusion: q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

2. binomial case: q(xt|xt−1) = B(xt;xt−1(1− βt) + 0.5βt)

Reverse diffusion kernel:

1. gaussian diffusion: p(xt−1|xt) = N (xt−1; fµ(xt, t), fΣ(xt, t))

2. binomial case: p(xt−1|xt) = B(xt−1; fb(xt, t))

Training targets:

1. gaussian diffusion: noise schedule βt, reverse diffusion parameters fµ(xt, t), fΣ(xt, t))

2. binomial case: reverse diffusion parameters fb(xt, t)
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2 DENOISING DIFFUSION PROBABILISTIC MODELS (HO ET AL., 2020)

2.1 OVERVIEW

This paper was the first to show diffusion models actually are capable of generating high quality sam-
ples. They only consider gaussian diffusion and introduce a weighted variational bound designed
according to a novel connection between diffusion probabilistic models and denoising score match-
ing with Langevin dynamics. Models naturally admit a progressive lossy decompression scheme
that can be interpreted as a generalization of autoregressive decoding. The downside is majority of
models’ lossless codelengths describe imperceptible image details and they do not have competitive
log likelihoods compared to other likelihood-based models.

2.2 NICE PROPERTIES

They explain some of the nice things we can do because we assumed the forward Markov Chain has
Gaussian transitions. Forward transitions are:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

Introduce notation:
αt = 1− βt

ᾱt = Πt
s=1αs

2.2.1 SAMPLE FROM FORWARD PROCESS

Forward transitions can also be written as:

xt =
√

1− βtxt−1 +
√
βtzt−1

with zt−1 ∝ N (0, 1). Using notation above:

xt =
√
αtxt−1 +

√
1− αtzt−1

=
√
αt

[√
αt−1xt−2 +

√
1− αt−1zt−2

]
+
√

1− αtzt−1

=
√
αtαt−1xt−2 +

√
1− αtzt−1 +

√
αt − αtαt−1zt−2

=
√
αtαt−1xt−2 +

√
1− αtαt−1z̄t−2

= · · · =
√
ᾱtx0 +

√
1− ᾱtz

We have merged all the additive Gaussian noise throughout the forward process and can write the
distribution of xt as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

2.2.2 TRACTABLE FORWARD PROCESS POSTERIORS (CONDITIONED ON x0)

Using Bayes we see forward process posteriors are tractable when conditioned on x0:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI)

where

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (3)

and

β̃t =
1− ᾱt−1

1− ᾱt
βt

This is why in Eq. 1 we introduced the conditioning on x0.

4



2.3 LOSS FUNCTION

They also use the ELBO in Eq. 2 but do not drop the edge effect term and work with:

K =−
T∑
t=2

EqDKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
+Hq(x

(T )|x(0))−Hq(x
(1)|x(0))−H

(
q(x(T )), p(x(T ))

)
+ Eq log

[
p(x(0)|x(1))

q(x(1)|x(0))

]
or

K =−
T∑
t=2

EqDKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
+ Eq log p(x(0)|x(1))

+Hq(x
(T )|x(0))−Hq(x

(1)|x(0))−H
(
q(x(T )), p(x(T ))

)
− Eq log q(x(1)|x(0))

Since: i) Hq(x
(1)|x(0)) = −Eq log q(x(1)|x(0)) and ii) Hq(x

(T )|x(0)) − H
(
q(x(T )), p(x(T ))

)
=

−DKL
(
q(x(T )|x(0))|p(x(T ))

)
the above simplifies to:

K =− Eq
T∑
t=2

DKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
︸ ︷︷ ︸

Lt−1

+ Eq log p(x(0)|x(1))︸ ︷︷ ︸
L0

−Eq DKL

(
q(x(T )|x(0))|p(x(T ))

)
︸ ︷︷ ︸

LT

2.4 MODEL SETUP

Reverse process has same functional form and we parameterize it as

p(xt−1|xt) = N (xt;µθ(xt, t),Σθ(xt, t)) (4)

1. fixed noise schedule: linearly increasing constants from β1 = 10−4 to βT = 0.02

2. fixed reverse process covariance matrices Σθ(xt, t) = σ2
t I

2.5 REPARAMETERIZATION

Look at Lt−1 = DKL
(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
:

Lt−1 = −DKL

(
q(x(t−1)|x(t), x(0))|p(x(t−1)|x(t))

)
= Eq

[
1

2σ2
t

||µ̃t(xt, x0)− µθ(xt, t)||
]

+ C

The most straightforward parameterization of µθ is a model that predicts µ̃t , the forward process
posterior mean. We’ve seen in section 2.2.1

xt =
√
ᾱtx0 +

√
1− ᾱtε =⇒ x0 =

1√
ᾱt

(
xt −

√
1− ᾱtε

)
with ε ∝ N (0, I). Using this expression for x0 and writing out µ̃ from Eq. 3 we have

µθ(xt, t) = µ̃t

(
xt,

1√
ᾱt

(xt −
√

1− ᾱtεθ(xt))
)

=
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(5)
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It is more advantageous in practice to parameterize the noise εθ(xt, t) with a deepnet. The loss term:

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(xt, t)||2
]

= Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)||2

]
2.6 EDGE TERM

All the images xi for i ∈ [1, . . . , T ] have pixel values in [−1, 1]. Set the last term of the reverse
process to an independent discrete decoder.

2.7 SIMPLIFIED TRAINING OBJECTIVE

L = Ex0,ε,t

[
||ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)||2

]
For t > 1 this re-weights terms from above, and for t = 1 this approximates L0 by ignoring edge
effects and σ1.

2.8 EXPERIMENTAL DETAILS

• T = 1000

• forward process variances are constants increasing linearly from β1 = 10−4 to βT = 0.02

• architecture is U-net with parameters shared across time and self-attention.
• time is specified with sinusoidal position embedding

2.9 EXPERIMENTAL RESULTS

Loss function ablation:

• training on the true variational bound yields better codelengths
• simplified objective yields the best sample quality

Parameterizarion: predicting ε performs approximately as well as predicting µ̃ when trained on the
variational bound with fixed variances, but much better when trained with simplified objective.

Learning reverse process variances leads to unstable training and poorer sample quality.

6



REFERENCES

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. CoRR, abs/1503.03585, 2015. URL
http://arxiv.org/abs/1503.03585.

7

https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1503.03585

	Deep Unsupervised Learning using Nonequilibrium Thermodynamics DBLP:journals/corr/Sohl-DicksteinW15
	Idea
	Forward Process
	Reverse Process
	Optimization Objective Setup
	Optimization Objective and ELBO

	Simplifying ELBO
	Peel off p(x(T)) into cross-entropy term
	Write log of product as sum of logs and keep first term apart
	Bayes to simplify each term in the sum from t=2 to T
	Disregard Edge Effect
	Putting everything back together
	Identify more entropy terms
	 Identify KL divergence terms 
	 Final ELBO Objective 

	Model

	Denoising Diffusion Probabilistic Models https://doi.org/10.48550/arxiv.2006.11239
	 Overview 
	 Nice Properties 
	Sample from forward process
	Tractable forward process posteriors (conditioned on x0)

	Loss function
	Model Setup
	Reparameterization
	Edge Term
	Simplified Training Objective
	Experimental details
	Experimental Results


