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Symbolic Regression

Typically implemented using 
genetic programming

Offers interpretable results 
that can extrapolate

AI Feynman 2.0
Uses neural networks to discover 
symmetries and simplify the 
problem



Equation Learner (EQL) Network



Key Ingredient: Sparsity



Meta-Learning Methods: 
● Joint Training ● Model-Agnostic Meta-Learning (MAML)

Train on all functions “simultaneously” 
- pass in data from each function 
sequentially and perform parameter 
updates.

No second order terms or inductive 
bias towards good initialization

θ’

Find a good initialization by 
“fine-tuning” on each function 
during training to get θ’. 
Propagates second-order 
derivatives from θ’ to the initial θ.
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Initial Results: Regularization Method

L0 sparsity regularization L0.5 sparsity regularization



Initial Results: Method Comparison

L0 regularization
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Distribution of Functions: Damped Harmonic Oscillator



Results: Drawing from the Function Distribution

Function generation process:
Sample C ~ Bernoulli(0.5)

- If C = 0
- Sample ⍵ ~ Unif(0.5, 2)*2π
- Sample ɸ ~ Unif(0, 2π)
- Function:

- f(x) = sin(⍵x+ɸ)

- Else
- Sample a,b ~ Unif(-1, 1)
- Function:

- f(x) = aᐧex + bᐧex

MAML Joint Training

0.68 0.72



Out of Domain Experiments

MAML Joint Training

8.76 6.75



Conclusion
Demonstrate meta-learning on the EQL network for symbolic regression

When functions are drawn from the same distribution (which is often the case in 
certain fields of science and engineering), meta-learning improves performance 
and generalizability of the EQL network

MAML outperforms joint training on average for test functions drawn from same 
distribution as training



Smoothed L0.5 Sparsity



Relaxed L0 Sparsity


