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Symbolic Regression
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Offers interpretable results
that can extrapolate

(22 —(-1>—<1—))+(7* cos(Y))

Typically implemented using
genetic programming

Figure 2: All functions can be represented as tree graphs whose nodes represent a set of basic
functions (middle panel). Using a neural network trained to fit a mystery function (left panel), our
algorithm seeks a decomposition of this function into others with fewer input variables (right panel),
in this case of the form f(z,y, z) = g[h(z,y),2] .

Al Feynman 2.0

Uses neural networks to discover
symmetries and simplify the
problem



Equation Learner (EQL) Network

Layer 1 Layer 2
)\ )\

( | i | \
g1=W4i-x hy=0(g91) g2=W3-hy h;=0(g7)

\ 4
/] W 5
\V:KE.:. @ 9 =Ws-a(hy)
E
20
ACFO




Key Ingredient: Sparsity

Sparsity through regularization

Loss function = MSE + R

Promote sparsity

EQL Network




Meta-Learning Methods:
e Joint Training e Model-Agnostic Meta-Learning (MAML)

— meta-learning

Train on all functions “simultaneously” Find a good initialization by 0 learning/adaptation

- pass in data from each function “fine-tuning” on each function VLs

sequentially and perform parameter during training to get ©'. VI

updates. Propagates second-order VL 2 g
derivatives from 6’ to the initial ©. -

No second order terms or inductive 1 03

bias towards good initialization

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
I: randomly initialize ¢
2: while not done do
3 Sample batch of tasks 7; ~ p(T)
4: forall 7; do
5 Evaluate VL7 ( fo) with respect to K examples
6: Compute adapted parameters with gradient de-
scent: 0! =60 — aVoLr (fo)
7. end for
8: Update # + 0 — 3V, ZT. ~p(T) L1, (fer)
9: end while




Initial Results: Regularization Method

L, sparsity regularization

6 symbolic regression tasks
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Initial Results: Method Comparison
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Distribution of Functions: Damped Harmonic Oscillator
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Overdamped

The underdamped response of the oscillator
is described by the equation:

x=e¢"a cos[a),t - a]

Time

X 0.6
One-half of
critical
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One-tenth
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damping
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Oscillator with resonant
frequency 10 rad/s
started from rest.

After Barger & Olsson



Results: Drawing from the Function Distribution

Function generation process: MAML and Joint Training Comparison

-
(=]

Sample C ~ Bernoulli(0.5)
fC=0 ——
Sample o ~ Unif(0.5, 2)*2m 1
Sample ¢ ~ Unif(0, 21)
Function:
f(x) = sin(ox+¢)
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Else
Sample a,b ~ Unif(-1, 1)
Function:
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f(x) = alle* + bl le* MAML Joint

MAML Joint Training
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Validation Loss

Out of Domain Experiments

Validation Loss Throughout Training
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Conclusion

Demonstrate meta-learning on the EQL network for symbolic regression

When functions are drawn from the same distribution (which is often the case in

certain fields of science and engineering), meta-learning improves performance
and generalizability of the EQL network

MAML outperforms joint training on average for test functions drawn from same
distribution as training



Smoothed L0.5 Sparsity

v 0 Y
-2 0 2 =2 0 21 =2 o 201 -2 o
w w

* Promotes sparsity stronger than L,
* Downsides:

* Non-convex

* Infinite gradient

Smoothed L, : regularization
* Avoids infinite gradient
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Fan, Qinweiet, et al.. "Convergence of online gradient method for feedforward neural networks with smoothing L1/2
regularization penalty.” Neurocomputing 131 (2014): 208-216.



Relaxed LO Sparsity

p=2 p=1

» Promotes sparsity without penalizing
magnitude
« Downside: non-differentiable

Relaxed L, regularization
» Can calculate gradients for backprop

Reparameterize weights as
0=001z

where z is a stochastic variable drawn

from the Hard Concrete distribution

Louizos, Christos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural Networks
through $ L_0 $ Regularization.” arXivpreprintarXiv:1712.01312(2017).



