
Meta-learning for Multi-Task Symbolic Regression

Samuel Kim, * Ileana Rugina *

Abstract

While symbolic regression has traditionally been
implemented using genetic algorithms, in recent
years deep learning has offered alternative ap-
proaches to symbolic regression to augment its
capabilities. However, in many scientific and engi-
neering scenarios, gathering observations can be
expensive or time-consuming making it difficult
to gather large datasets and thus apply standard
machine learning algorithms. However, because
many experiments stem from the same underly-
ing phenomena, the equations used in a particular
field of science or engineering may share common
element (i.e. primitive functions or equation struc-
ture), providing an opportunity to introduce induc-
tive biases in the form of meta-learning. Here we
apply model-agnostic meta-learning (MAML) to
the equation learner (EQL) network, a deep learn-
ing system for symbolic regression, and solve
multi-task regression problems that are gener-
ated either arbitrarily or from function distribu-
tions. We find that MAML learns a good ini-
tialisation that outperforms joint training with-
out fine-tuning in the evaluation phase. We anal-
yse both the joint training baseline and MAML
in out-of-distribution setting. Our code is avail-
able at https://github.com/samuelkim314/6.883-
Project-MetaEQL.

1. Introduction
Symbolic regression is a type of regression analysis that
aims to discover analytic equations to describe a dataset.
The resulting equation is interpretable by a human and can
reveal insights that are useful for discovery in science and
engineering. For example, astronomical observations were
used to discover Kepler’s laws of planetary motion, which
eventually led to the discovery of the laws of motion and

*Equal contribution . Correspondence to: Samuel Kim
<samkim@mit.edu>, Ileana Rugina <irugina@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. Example of the Equation Learner (EQL) network for
symbolic regression using a neural network. Here we show only 3
activation functions and 1 hidden layer for visual simplicity, but
the network can include more functions or more hidden layers to
fit a broader class of functions.

laws of gravitation. Additionally, these equations can ex-
trapolate well outside of the regime from which they were
formed, making them extraordinarily powerful in science
and engineering for prediction and design.

Since many equations that appear in physical systems often
share the same operators and similar forms, we plan to apply
meta learning to symbolic regression tasks and leverage
the inductive bias of natural laws into symbolic regression
systems. Additionally, in a multi-task setting the algorithm
can also learn useful priors that apply to different fields,
such as different sub-fields of physics.

Traditionally, symbolic regression is solved using genetic
programming (GP), in which the equation is encoded using
a syntax tree, and the GP algorithm iterates through different
tree structures to find the equation that best fits the dataset
(Dubčáková, 2011).

A more recent approach is using neural networks in which
the primitive functions correspond to the activation func-
tions and the weights after training correspond to coeffi-
cients in front of the primitive functions (Martius & Lam-
pert, 2016; Sahoo et al., 2018; Kim et al., 2020). The EQL
network (shown in Figure 1) uses primitive functions as
the activation units and trains with backprop and a sparsity
regularization term to reach an interpretable equation that

https://github.com/samuelkim314/6.883-Project-MetaEQL
https://github.com/samuelkim314/6.883-Project-MetaEQL

Meta-learning for Multi-Task Symbolic Regression

describes the dataset. Another system is AI Feynman in
which neural networks are used to help find symmetries
and simplifications in the data so that it is more amenable to
brute-force approaches (Udrescu & Tegmark, 2020; Udrescu
et al., 2020). AI Feynman explicitly introduces physical in-
ductive biases through a handful of different techniques such
as performing dimensional analysis or explicitly encoding
observed symmetries.

In this work, we focus on the EQL network. We use both
joint training and MAML to learn a good initialization of
the EQL network that can be used in the multi-task setting,
which in this case, is regression on a variety of different func-
tions. We train functions drawn from arbitrary distributions
as well as from a distribution defined by the damped har-
monic oscillator physical system and evaluate the resulting
model on in-distribution and out-of-distribution validation
functions.

2. Methods
2.1. EQL Network

We briefly review the EQL network architecture here, but
more details can be found in (Martius & Lampert, 2016;
Sahoo et al., 2018; Kim et al., 2020).

The EQL network is a fully-connected network with input
x where the ith layer of the neural network is described by

gi = Wihi−1

hi = a (gi)

where Wi is the weight matrix of the ith layer and h0 = x
is the input.

The activation function a(g), rather than being the usual
choices in neural networks such as ReLU or tanh, may
consist of a separate function for each component of g (such
as sine or the square function) and may include functions
that take two or more arguments while producing one output
(such as the multiplication function):

a(g) =

a1(g1)
a2(g2)

...
anh

(gng−1, gng)

 (1)

A visual example of the EQL network is shown in Figure 1.
Note that an additive bias term can be absorbed into a(g) for
convenience. These activation functions in (1) are analogous
to the primitive functions in symbolic regression. Allow-
ing functions to take more than one argument allows for
multiplicative operations inside the network. We also allow
for activation functions to be duplicated within each layer
(i.e., multiple components in g can use the same activation
function).

By stacking multiple layers (i.e. L ≥ 2), the EQL architec-
ture can fit complex combinations and compositions of a
variety of primitive functions.

For these experiments, we use the activation functions in
Table 1

a(g) ng
1 2m
g 4m
g2 4m
sin(2πg) 2m
eg 2m
sigmoid(20g) 2m
g1 · g2 2m

Table 1. Primitive functions a(g) used in the EQL network and
the number of times that each primitive function is duplicated in
each layer, ng . m is a hyper-parameter that controls how many
times each activation function is duplicated, and thus controls the
width of each hidden layer. The sin and sigmoid functions have
multipliers inside so that the functions more accurately represent
their respective shapes inside the input domain of x ∈ [−1, 1]

2.2. Sparsity Regularization

A key ingredient of making the results of symbolic regres-
sion interpretable is enforcing regularization such that the
system finds the simplest possible equation that fits the data.
In the EQL network, we use sparsity regularization to set
as many weight parameters to 0 as possible such that those
parameters are inactive and can be removed from the final
expression. Thus, the EQL network uses as few nodes as
possible, translating into simpler equations that are more
readily interpretable and can effectively extrapolate.

Here we compare a smoothed version of L0.5 regularization
and a relaxed version of L0 regularization.

L0.5 has been proposed in neural networks to enforce spar-
sity more strongly without penalizing the magnitude of
the weights as much as L1 (Xu et al., 2010; 2012). How-
ever, L0.5 regularization has a singularity in the gradient
as the weights go to 0, which can make training difficult
for gradient descent-based methods. To avoid this, we use
a smoothed version of L0.5 proposed in (Wu et al., 2014),
which we label as L∗0.5. The L∗0.5 regularizer uses a piece-
wise function to smooth out the function at small magni-
tudes:

L∗0.5(w) =

|w|
1/2 |w| ≥ a(
− w4

8a3 + 3w2

4a + 3a
8

)1/2
|w| < a

(2)

where a ∈ R+ is the transition point between the standard
L0.5 function and the smoothed function. This regulariza-

Meta-learning for Multi-Task Symbolic Regression

tion is applied element-wise to all the weight matrices in the
EQL network and summed up.

We also use a relaxed version of L0 regularization intro-
duced in (Louizos et al., 2017). While L0 regularization is
not differentiable and thus not amenable to gradient descent
training methods, the relaxed L0 regularization introduces
stochastic gate variables z drawn from hard concrete distri-
butions parameterized by α, which are tuned during training.

The weights W of the neural network are reparameterized
as

W = W̃ � z

where each element of z, zj,k, is a stochastic variable drawn
from the hard concrete distribution:

u ∼ U(0, 1)

s = sigmoid ([log u− log(1− u) + logαj,k] /β)

s̄ = s(ζ − γ) + γ)

zj,k = min(1,max(0, s̄))

where αj,k is a trainable variable that describes the location
of the hard concrete distribution, and β, ζ, γ are hyperpa-
rameters that describe the distribution. The regularization
penalty is the expectation of z over the distribution parame-
ters, which is given analytically:

L0(W) =
∑
j,k

sigmoid
(

logαj,k − β log
−γ
ζ

)

For the relaxed L0 regularization, our meta-learning algo-
rithm will also learn the proper settings for α.

2.3. Meta-Learning

Meta-learning aims to design a machine learning model
that can adapt well to multiple tasks with little data in each
new task that it sees. Here we compare two algorithms:
joint training and model-agnostic meta-learning (MAML).
In the context of symbolic regression, the tasks correspond
to different functions that we want to learn.

2.3.1. JOINT TRAINING

Define θ as the collection of parameters in the machine
learning model that we aim to learn. In joint training, we
sample a function f and perform gradient descent on a batch
of data from this function f to reach a new parameter θ′.
We then repeat this loop starting from θ′ until the training
reaches convergence.

During testing, the model is fine-tuned on the new function
through gradient descent.

2.3.2. MAML

MAML is a gradient-based meta-learning technique that
aims to find a good weight initialization so that the neural
network can be adapted to an unseen task with few data
points and few training steps (Finn et al., 2017). This is
done by training the neural network on multiple tasks during
meta-training with a fixed number of steps, and updating the
initial weights such that the fixed number of training steps
would perform well on the tasks.

Specifically, we start with initial parameters θ and sample
a function f . We then perform gradient descent on a batch
of data from f to reach parameter φ. We then calculate
the derivative of the loss at parameter φ with respect to the
initial parameters θ and perform gradient descent on θ to
reach θ′. We throw away φ and repeat the process again
starting from θ′ with a new function f .

MAML differs from joint training in that θ only serves to
be a good initialization for learning f , and is not necessarily
a good parameter itself to predict f . The assumption is that
we perform fine-tuning on θ. This algorithm thus calculates
second-order gradients to θ as it is learning how to learn.
Raghu et al. (2019) show that MAML can be seen as training
a feature extractor common across all tasks and finetuning
only the network’s last layer to produce task-specific predic-
tions. Thus, in the case of symbolic regression we should
be able to meta-learn common operations.

We use the Learn2Learn (Arnold et al., 2020) implementa-
tion of MAML. We train using the Adam (Kingma & Ba,
2014) optimizer with a learning rate of 10−3. MAML’s
inner loop adaptation uses SGD and we experiment with
three different learning rates, {10−3, 10−2, 10−1}, as well
as different number of adaptation steps, {1, 3, 10}. We find
that 10−2 works best as an inner learning rate and using
more than 1 adaptation steps leads to training instabilities.

3. Results: Arbitrary Equations
3.1. Tasks

ID formula

“id” f(x) = x

“gaussian1” f(x) = exp(−x2/2)√
2∗π

“exp” f(x) = exp(x)

“sin” f(x) = sinx

“f1” f(x) = x · sinx− 3

“f2” f(x) = x2 + 3 · x+ 1

Table 2. Summary of 1D regression tasks to test multi-task sym-
bolic regression with MAML on the EQL network.

Meta-learning for Multi-Task Symbolic Regression

We perform symbolic regression on a set of 1-dimensional
functions using the EQL network and experiment with vary-
ing the number of tasks. We train the EQL network for
10000 outer-loop iterations and consider 100 support and
100 query data points for each regression problem. The
regression tasks we consider are summarized in Table 2. We
present training loss curves for a small set of target functions
and use joint training as a baseline. For all figures in this sec-
tion the vertical y-axis is the MSE loss and measurements
are inter-spaced by 250 update steps over each function.

3.2. Regularization

Figure 2. MAML training loss curve on the EQL network with (a)
the relaxed L0 regularization and (b) the smoothed L∗0.5 regulariza-
tion. Note that the EQL network with L∗0.5 struggles to find a good
initialization in the first few thousand optimization steps, likely
as a result of the EQL network getting trapped in a local minima.
Sharp improvements are sometimes visible in more than a single
task, which suggests that here we notice the intended benefits
of jointly training multiple regression tasks. The L0 regularized
EQL network seems to be more stable as it reaches a reasonable
initialization much more quickly.

A comparison of the training loss curves for the EQL net-
work trained using MAML are shown in Figure 2. All 6
functions are used during training. The EQL network with
the relaxed L0 regularization quickly finds a good initializa-
tion after a few hundred optimization steps and the training
loss does not change significantly for the remainder of the
training. However, the “f2” function remains remarkably
more difficult to fit compared to the rest of the function,
suggesting that the EQL network has found a local minima
that is suitable for the first 5 functions but not the 6th.

The EQL network with L∗0.5 regularization struggles to find

a good initialization in the first few thousand optimization
steps, although it finds a reasonably good initialization after
some time. However, note that the average training loss is
still high er than that of the L0 regularized network.

3.3. Negative Transfer and Training Instabilities

Figure 3. MAML training loss for the L∗0.5 regularized EQL net-
work. Applying MAML to EQL can exhibit negative transfer
because the performance on “f1” deteriorates while the network
learns the other regression tasks.

Figure 3 shows the training curves of the EQL network
with the smoothed L∗0.5 regularization when the first five
functions in Table 2 {“id”, “gaussian1”, “exp”, “sin”, “f1”}.
The performance on the “f1” function deteriorates at the
same time as the network learns to fits the others.

A comparison between Figures 3 and 2(b) (in which the
EQL network is trained on all six regression tasks) suggests
performance in the multi-task setting is sensitive to the
initialization as it can tend to get stuck in local minima do
not adapt well to all regularization tasks. For example, we
see the EQL network in Figure 3 has found an initialization
that performs well in the first four functions, but not the
fifth, whereas the EQL network in Figure 2(b) has found an
initialization that performs reasonably, but not remarkably,
well for all six functions and performs worst for the third
and sixth regression functions. Additionally, we find that
MAML training heavily depends on hyper-parameters such
as both the outer loop’s learning rate schedule as well as
the inner loop step-size and that higher inner-loop steps-
sizes can lead to either exploding loss functions or sharp
improvements in performance.

3.4. Increasing Network Capacity

We experimented with higher network capacity by doubling
the number of units in each hidden layer (m = 1 and m = 2
and find that the training is more unstable without seeing
good performance gains. This supports the intuition that
strong regularization is critical to good performance.

Meta-learning for Multi-Task Symbolic Regression

3.5. Comparison with Joint Training

Figures 4 and 5 compares the performance of the EQL
network trained with either joint training or MAML, for both
types of regularization and using various number of training
tasks. As above, we find that MAML can be unstable on
the L∗0.5 regularized EQL network. On the other hand, this
same regime leads to the positive jumps in performance that
allows MAML to either match joint-training in the three-
task scenario or better-fit the train functions in the 5-task
scenario.

In the case of the L0 regularized EQL network, the training
is much more stable under MAML. Comparing Figure 4(c)
and Figure 5(a) which are both trained on 5 tasks, we see that
the type of regularization does not make a huge impact on
performance for joint training the EQL network. Comparing
joint training and MAML, MAML on average performs
better than joint training as it is able to fit most of the training
functions extremely well, but it seems to fall into local
minima that diminishes the performances of the “f2” task
moreso than joint training

4. Results: Function Distributions
4.1. Tasks

The original MAML paper tests the algorithm on a regres-
sion task f(x) = A sin(ωx + B) where ω is fixed and A
and B are sampled for each task. We aim to generalize
this and choose tasks from a distribution of formulas. We
speculate that equations drawn from the same sub-fields of
science and engineering have more in common with each
other, analogous to drawing image recognition tasks from
similar or different distributions of images. For example,
the damped harmonic oscillator describes a wide variety
of systems in physics, and is described by the differential
equation

d2x

dt2
+ ζω0

dx

dt
+ ω2

0x = 0

The general solutions to this equation are given by f(t) =
a exp (−vt) cos(ωt− φ), where the parameters depend on
the parameters in the differential equation as well as the ini-
tial conditions. This can also be decomposed into a purely
sinusoidal solution, an exponential solution, or a combina-
tion depending on the parameters and initial conditions.

Harmonic Oscillator Solution Basis To mimic the distri-
bution of solutions to the damped harmonic oscillator equa-
tion, we generate symbolic regression tasks according to a
hierarchical generation process:

1. We first sample C from a Bernoulli distribution with
p = 0.5.

2. We then sample a linear combination of either sinu-

soidal waves or exponential functions. If C is 0 we
sample uniformly f ∈ [0.5, 2] and φ ∈ [0, 2π] in order
to construct:

f (1) = sin{2fπx+ φ}

Otherwise we uniformly sample a, b ∈ [−1, 1] to con-
struct:

f (2) = a · ex + b · e−x

4.2. Results

In all following results we drastically reduce the number of
support and query samples for each regression tasks from
100 data points to just 10 because we can now generate
more tasks. This setting better reflects numerous scientific
scenarios where gathering observations is either expensive
or time-consuming, but we have access to different experi-
ments which stem from the same underlying phenomena.

We train EQL networks using both MAML and joint train-
ing on 20 symbolic regression tasks and evaluate on 10
tasks using 10 support and query data points from each
function. We use functions generated according to the pro-
cedure outlined in Section 4.1 and summarize our results in
Figure 6. For this evaluation we did not finetune MAML on
the unseen tasks: surprisingly, we find that adaptation hurts
final performance using MAML and does not significantly
influcence joint training in either direction. The average
validation loss is 0.68 for MAML and 0.72 for joint training.
In agreement with our findings above we that the validation
loss of MAML has a higher variance across different valida-
tion tasks. On average MAML outperforms joint training in
this low-data regime.

4.3. Out of Distribution Experiments

We evaluate both MAML and joint training on out-of-
distribution tasks in order to determine whether the inner
loop optimization procedure improves transfer learning low-
date performance. To this end we modify the data gener-
ation procedure in Section 4.1 to sample f ∈ [2, 4] and
a, b ∈ [1, 2] for the validation tasks. Through this experi-
mental section we finetune on new tasks’ support sets.

Figure 7 shows how MAML and Joint Training perform
on out of distribution tasks as training progresses. We no-
tice joint training converges much faster and outperforms
MAML’s best performance on some tasks. On the other
hand it seems to have reduced generalizability capacities
as it is not able to make any progress on the more diffi-
cult tasks. MAML on the other hand seems to compromise
and perform reasonably well on any task from the unseen
domain.

Figure 8 summarizes the final results of EQL methods
trained with either method on out of distribution tasks.

Meta-learning for Multi-Task Symbolic Regression

Figure 4. Comparison of (a, c) joint training (b, d) and MAML using either (a, b) three or (c, d) five train tasks. The EQL network uses
L∗0.5 regularization.

Figure 5. Comparison of (a, c) joint training (b, d) and MAML using either (a, b) three or (c, d) five train tasks. The EQL network uses L0

regularization.

Meta-learning for Multi-Task Symbolic Regression

Figure 6. Comparison between EQL networks trained using either
MAML or the Joint Training baseline. Both the train and validation
tasks are drawn from the same distribution described in Section
4.1. The y axis represents Final validation MSE losses. MAML’s
performance covers a wider range of values.

MAML’s adaptation process makes its final performance
distribution more spread out and more robust to distribu-
tional shifts in its inputs. MAML’s average loss is 8.76 and
that obtained from joint training is 6.75. As the differences
between train and test tasks distributions’ increase using
MAML becomes more advantageous.

5. Limitations
5.1. Division

While our prior work on using the EQL network for sym-
bolic regression focused mostly on equations that do not
include the division operator (Kim et al., 2020), many equa-
tions in physics rely on division. The NALU and EQL÷

networks offer two different approaches to integrating the
division operator into neural networks (Trask et al., 2018;
Sahoo et al., 2018). However, it has been reported that the
NALU architecture can be difficult to train and converge
(Madsen & Johansen, 2020), so here we focus on replicating
the EQL÷ approach, which we briefly outline here.

The difficult of using the division operator f(x1, x2) =
x1/x2 as-is as an activation function is that it has a pole
at x2 = 0 where gradients can explode, and that it is non-
monotonic. The EQL÷ proposes to use an altered version
of the division operator:

f(x1, x2) =

{
0 if x2 ≤ θ
x1/x2 otherwise

where θ is a threshold hyperparameter that prevents the
function (and the resulting gradient) from becoming too
large. Additionally, we introduce a penalty term on the

Figure 7. Validation loss throughout training evaluated on out-of-
distribution tasks.

Figure 8. Comparison of MAML and Joint Training performance
on out of distribution tasks.

inputs into this function: p(x2) = max (θ − x2, 0). These
two components encourage the network to use only a single
branch of the division function to avoid the discontinuity.

We tried to fit functions f(x) = 1/x and f(x1, x2) =
x1/x2, but the EQL network was unable to find a simple
equation to fit the data. We also fit the function

f(x1, x2) =
sin(πx1)

(x22 + 1)

which is used for testing in (Sahoo et al., 2018). While
the network was able to find this equation, it has a very
low success rate and is very sensitive to hyper-parameters.
Additionally, the network is prone to exploding gradients,
especially when the hyper-parameter θ is set to a small
value. Thus, for the results presented here, we do not use the
division operator as a basis function, and only fit functions
that do not need this primitive. Due to the ubiquity of the

Meta-learning for Multi-Task Symbolic Regression

division operator in science and engineering, future work
will focus on integrating this into the EQL network.

6. Conclusion
We extend EQL networks to multi-task and low-data regimes
as a first step in automating scientific discovery in areas
where data is sparse. We empirically test both joint and
bilinear training techniques and identify their strengths and
weaknesses: the former is often more stable, while the latter
often outperforms joint training and is better suited for out-
of-domain scenarios. This shows that the EQL network can
be adapted towards specific fields or sub-fields of science
and engineering without having any explicit inductive biases
built in other than the primitive functions. We experiment
with two different regularization techniques and identify a
convex relaxation of the L0 norm that leads to simpler and
more interpretable symbolic expressions.

References
Arnold, S. M. R., Mahajan, P., Datta, D., Bunner, I., and

Zarkias, K. S. learn2learn: A library for meta-learning
research, 2020.

Dubčáková, R. Eureqa: software review. Genetic program-
ming and evolvable machines, 12(2):173–178, 2011.

Finn, C., Abbeel, P., and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv
e-prints, art. arXiv:1703.03400, March 2017.

Kim, S., Lu, P. Y., Mukherjee, S., Gilbert, M., Jing, L.,
Čeperić, V., and Soljačić, M. Integration of neural
network-based symbolic regression in deep learning for
scientific discovery. IEEE Transactions on Neural Net-
works and Learning Systems, 2020.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization. arXiv e-prints, art. arXiv:1412.6980,
December 2014.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. arXiv
preprint arXiv:1712.01312, 2017.

Madsen, A. and Johansen, A. R. Neural arithmetic units.
arXiv preprint arXiv:2001.05016, 2020.

Martius, G. and Lampert, C. H. Extrapolation and learning
equations. arXiv preprint arXiv:1610.02995, 2016.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O.
Rapid Learning or Feature Reuse? Towards Understand-
ing the Effectiveness of MAML. arXiv e-prints, art.
arXiv:1909.09157, September 2019.

Sahoo, S. S., Lampert, C. H., and Martius, G. Learning
equations for extrapolation and control. arXiv preprint
arXiv:1806.07259, 2018.

Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blun-
som, P. Neural arithmetic logic units. In Advances in
Neural Information Processing Systems, pp. 8035–8044,
2018.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., and
Tegmark, M. Ai feynman 2.0: Pareto-optimal symbolic
regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782, 2020.

Wu, W., Fan, Q., Zurada, J. M., Wang, J., Yang, D.,
and Liu, Y. Batch gradient method with smoothing
L1/2 regularization for training of feedforward neu-
ral networks. Neural Networks, 50:72–78, feb 2014.
ISSN 0893-6080. doi: 10.1016/J.NEUNET.2013.11.
006. URL https://www.sciencedirect.com/
science/article/pii/S0893608013002700.

Xu, Z., Zhang, H., Wang, Y., Chang, X., and
Liang, Y. L 1/2 regularization. Science China
Information Sciences, 53(6):1159–1169, jun 2010.
ISSN 1674-733X. doi: 10.1007/s11432-010-0090-0.
URL http://link.springer.com/10.1007/
s11432-010-0090-0.

Xu, Z.-B., Guo, H.-L., Wang, Y., and Zhang, H.
Representative of L1/2 Regularization among Lq
(0 < q ≤ 1) Regularizations: an Experimental
Study Based on Phase Diagram. Acta Automatica
Sinica, 38(7):1225–1228, jul 2012. ISSN 1874-
1029. doi: 10.1016/S1874-1029(11)60293-0.
URL https://www.sciencedirect.com/
science/article/pii/S1874102911602930.

https://www.sciencedirect.com/science/article/pii/S0893608013002700
https://www.sciencedirect.com/science/article/pii/S0893608013002700
http://link.springer.com/10.1007/s11432-010-0090-0
http://link.springer.com/10.1007/s11432-010-0090-0
https://www.sciencedirect.com/science/article/pii/S1874102911602930
https://www.sciencedirect.com/science/article/pii/S1874102911602930

